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ABSTRACT

Magnetic fields are well known to affect the evolution of fluids via the J3 B force, where J is the current density and B is the magnetic field. This
force leads to the influence of magnetic fields on hydrodynamics (magnetohydrodynamics). Magnetic fields are often neglected in modeling of
high-energy-density plasmas, since J 3 B is very small compared with the plasma pressure gradients. However, many experiments lie in a
separate part of parameter space where the plasma is indirectly affected via magnetization of the heat flux and charged particle transport. This is
true even for initially unmagnetized plasmas, sincemisaligned density and temperature gradients can self-generatemagnetic fields. By comparing
terms in the induction equation, we go on to estimate the regions of parameter space where these self-generated fields are strong enough to affect
the hydrodynamics.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0057087

I. INTRODUCTION

Magnetic fields can directly affect the evolution of a fluid via the
J 3 B force in the momentum equation. In a conducting fluid, the
coupling is two-way, such that magnetic fields also follow the fluid
motion. This leads to complex coupled magnetohydrodynamics
(MHD) phenomena such as magnetic plasma confinement,1 MHD
waves,2 magnetized fluid turbulence,3 accretion disk instabilities, and
astrophysical jets.4

Electromagnetic plasma physics effects can arise even in initially
unmagnetized plasmas. This is because self-generated magnetic fields
arise through the Biermann mechanism, occurring around mis-
aligned electron pressure and density gradients.5 Self-generated
magnetic fields are therefore inherently linked to plasma asymme-
tries and vorticity generation. However, these self-generated fields are
often neglected in modeling of high-energy-density (HED) plasmas.
This is usually justified by arguing that the resulting J 3 B force is
small compared with hydrodynamic pressure forces.

In this work, we argue that it is often incorrect to neglect these
self-generatedmagnetic fields inHED plasmas.We show that in a hot
enough plasma, the fields can become strong enough to indirectly
affect hydrodynamics via localizing electrons and thereby insulating
the electron heat flux.6 The magnetized reduction and deflection of
heat flux then affects the hydrodynamics. The Biermann fields are

especially potent, since they naturally arise around temperature
gradients, precisely where heat flux is important. This feedback to
hydrodynamics via the heat flux is of central importance to HED
plasmas. Magnetized heat flux can lead to significant changes to
hydrodynamics, temperature profiles, and drive symmetry.7,8 It can
also affect growth rates of fluid instabilities, such as the ablative
Rayleigh–Taylor instability.9 However, it is only covered under the
Braginskii extended magnetohydrodynamics (XMHD) framework
and is not a part of ideal MHD or resistive MHD. We provide a
detailed discussion of XMHD effects and estimate their magnitude.
By making some assumptions, their relative importance can be vi-
sualized across the two-dimensional density–temperature parameter
space.

Owing to the strongly temperature-dependent nature of mag-
netic and heat flux effects, we find that XMHD can significantly affect
hydrodynamics in hotter HED plasmas such as hohlraums,7 laser
ablation fronts,10,11 Z-pinches, and inertial confinement fusion (ICF)
fuel.12 We show that in the relevant regions of parameter space,
XMHD reduces to the simpler resistiveMHD andHallMHDmodels.
By making some further assumptions, it is possible to estimate the
minimum temperature at which the self-magnetization saturates at a
level strong enough to affect hydrodynamics.

Another important aspect is the magnetization of fast ion
transport. Unlike the collision frequency, themagnetic gyrofrequency
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is independent of particle velocity (for nonrelativistic particles). This
makes magnetic effects especially important for fast particles. For
example, 3.5 MeV alpha particles from deuterium–tritium fusion
reactions have a gyroradius of 27|B|−1 cm, with B in tesla. Magnetic
fields can reach levels where the fusion products are confined,

affecting the fuel energy balance. This effect is used advantageously in
magnetized ICF concepts. Furthermore, owing to the rapidly in-
creasing temperature, self-generated magnetic fields are likely to
affect burn wave propagation and ignition yield even in standard
ICF.13

FIG. 1. XMHD parameter space for various values of |B| and Z, with ion mass number A � 2Z. The red region is magnetic-pressure-dominated. The blue region indicates
intermediate Hall parameter 0.01 < χ < 100. The region above the green line is where the Nernst advection is larger than the resistive diffusion. The black line shows the Coulomb
logarithm and the gray line is the Fermi temperature. Regions of validity for different MHD models and parameters for several experiments are indicated.
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In Sec. II, we assess the theory of magnetized heat conduction,
with reference to the density–temperature parameter space. In
Sec. III, we describe the extension to theMHDtheory ofmagneticfield
advection. In Sec. IV, we compare terms in the induction equation to
estimate the saturated self-generated magnetic field. Section V
presents a summary and discussion.

II. THEORY AND PARAMETER SPACE
FOR MAGNETIZED HEAT FLUX

There is a dimensionless parameter that indicates the impor-
tance of magnetic field in the fluid momentum (first fluid moment)
equation. This is given by

β � 2P

c2ϵ0|B|2 ≃ 0.25
P

bar
( ) |B|

T
( )−2

, (1)

where P is the total (ion plus electron) internal plasma pressure, c is
the speed of light, and ϵ0 is the vacuumpermittivity. Equation (1) does
not consider the kinetic energy of the fluid. Therefore, for fluids with
large Mach number, it may be pertinent to instead use the ram
pressure beta

βR � 2ρ|u|2
c2ϵ0|B|2 ≃ 2500

ρ

g cm−3( ) |u|
km s−1

( )2 |B|
T

( )−2

(2)

as a better measure of the relative importance of magnetic forcing.
This expression contains the fluid mass density ρ and velocity u.

The magnetic field contributes to the effective pressure that
forces the fluid. The J3 B force also has a component related to the
curvature of magnetic field lines. This tends to force the fluid in a
direction that straightens the field lines. For example, with the in-
terface curvature introduced by the Rayleigh–Taylor and Kelvin–
Helmholtz instabilities, the magnetic tension can stabilize the in-
terface.14 However, themagnetic pressure and tension effects are only
measurable14 when β + βR < 100.

The region β < 1 is visualized in red in the parameter space in
Fig. 1. Since this plot neglects the contribution of βR, it is valid only for
Mach numbers much less than one. Figure 1(a) shows the case for a
typical laboratory field strength of 10 T. Tokamak fusion plasmas
have β ≃ 1, as required for efficient use of the available magnetic field
strength. Other panels in Fig. 1 show the alterations due to increased
field strength or ionization Z. It should be noted that all figures in this
work assume an ion charge-to-mass ratioZ/A� 1/2, whereA is the ion
mass number.

Figures 1(c)–1(f) are for higher magnetic field strengths, as can
be achieved by plasma compression. Self-generated fields in laser-
produced plasmas can also reach 100 T.15 Parameters measured for
several different experiments are highlighted on the plots. It is clear
that initially unmagnetized HED plasmas often have β≫ 1, typically
β ≃ 100 or more. We note that this conclusion is strengthened by the
inclusion of βR and the fluid kinetic energy. With β ≫ 1, it is often
assumed that self-generated magnetic fields have no effect on the
plasma and so fluid evolution is described by pure hydrodynamics.
However, this is not necessarily true. This is because magnetic fields
can still affect the hydrodynamics system closure through higher-
order fluid moments such as the magnetized heat flux. These
transport processes depend on the relative importance of plasma

Coulomb collisions and magnetic fields, given by the electron Hall
parameter16

χ � e|B|τ
me

≃
6.13 1016

Z lnΛ
Te

eV
( )3/2 |B|

T
( ) ne

cm−3( )−1
, (3)

where Z is the ion charge state, lnΛ is the Coulomb logarithm, and ne,
Te, e,me, and τ are the electron number density, temperature, charge,
mass and Braginskii electron–ion Coulomb collision time, respec-
tively. The Hall parameter indicates the strength of electronmagnetic
gyromotion in comparisonwithCoulomb collisions. The regionswith
0.01 < χ < 100 are indicated in blue in the parameter space in Fig. 1. It
should be noted that the curves in all figures of this work are plotted
using numerical solutions. This is necessary because the Coulomb
logarithm also depends indirectly on Te.

Astrophysical plasmas havewide ranges of plasma β and electron
Hall parameter χ. XMHD effects are likely to be important in proto-
planetary disks17 and possibly in the early universe.18 For most other
astrophysical and space systems, while the plasma β can range from≪1
(e.g., in pulsars and astrophysical jets) to≫1 (e.g., in galaxy clusters and
the dense parts of accretion disks), χ tends to be much larger than unity.
For example, the solar wind has density ne ≃ 10 cm−3, temperature
100 eV, and |B| ≃ 10−4 T. This results in χ ≃ 1013.

Conversely, if χ ≪ 1, magnetic fields are unimportant for
transport processes. The electrons are primarily confined byCoulomb
collisions. This means that the unmagnetized Spitzer heat flux fluid
closure is applicable. This results from faster electrons in the tail of the
distribution function moving down the temperature gradient. The
central idea of XMHD is that the electron collisions and magnetic
gyromotion may be on similar timescales, such that χ ≃ 1. The paths
of the faster electrons are then bent by their gyromotion. This ef-
fectively confines the electron motion perpendicular to the field and
therefore reduces the heat conductivity below the Spitzer value. The
heat conductivity becomes anisotropic because electron motion and
conductivity along the field line are unaffected.

As can be seen in Fig. 1, HED plasmas are often characterized by
this intermediate regime 0.01 < χ < 100 (shown in blue) with the
magnetized heat flux. This includes laser plasma experiments,19

turbulent dynamo experiments,4,20 magnetized ICF,21 hohlraums,7

magnetized liner inertial fusion22 and Z-pinches.
The transport processes are heavily dependent on Z [Eq. (3)].

Therefore, we present copies of the parameter space for various values
of Z. Figure 1 also shows panels for various magnetic field strengths.
For example, high-power near-visible lasers have a critical density
around 10−3 g cm−3 and are often intense enough to produce tem-
peratures >100 eV at the ablation front. Figure 1(d) shows that self-
generated field strengths of ≃100 T are enough to magnetize the
electron heat flux and change the ablation process.23,24 This means
that the full Braginskii XMHDmodel is required to properly describe
the heat flux, and the Spitzermodel is invalid. Furthermore, these heat
flux models are only valid in the weakly coupled plasma and non-
degenerate regions above the gray and black lines in Fig. 1. The
meaning of the green curves in Fig. 1 will be discussed in Sec. III.

The hot electrons that carry the heat flux are confined and deflected
by the Lorentz force −e(ve 3 B), where ve } −∇Te is the velocity of hot
electrons down the temperature gradient. This intuitive argument leads
us to expect that the heat flux is deflected in the direction of ∇Te3 B by
the magnetic field. Kinetic theory indicates that this is indeed true.
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For example, in the special case where the magnetic field direction
b̂ � B/|B| is perpendicular to the temperature gradient and current, the
full derivation results in the Braginskii electron heat flux

q � neTeτ

me
(−κ⊥∇Te + κ∧∇Te 3 b̂) + Te

e
(−β⊥J + β∧J3 b̂). (4)

The full three-dimensional theory is of similar character, and is given
in Refs. 6, 16, 25, and 26. The XMHD formulation relies on the precise
kinetic interaction of magnetic gyromotion with Coulomb collisions.
These transport properties are encapsulated in the positive dimen-
sionless κ and β transport coefficients,6,16,25,27 depending only on χ
and Z. They must be found from kinetic theory. Equation (4) shows
that heat flux can also be carried by an electric current, with terms
proportional to the β transport coefficients. We will show in Sec. IV
that in HED plasmas, the temperature gradient terms usually
dominate over these current terms.

Theperpendicular (⊥) coefficients describe transport perpendicular
to B, giving the heat flux for the component of −∇Te or −J that is
perpendicular toB. The cross-perpendicular (∧) coefficients describe the
deflection of the heat flux by the magnetic field, into the direction of
∇Te 3 b̂ or J3 b̂. The deflection becomes prominent (κ∧ ≃ κ⊥) when
thefield produces gyromotion of a similar strength to collisions,meaning
χ ≃ 1. For example, even aHall parameter as low as χ ≃ 0.01 is enough to
change the heat flux profile and invert the asymmetries in a laser ablation
front.24These asymmetries act as a seed forRayleigh–Taylor instability in
ICF, and can have a large effect on overall fusion yield.

Kinetic theory gives κ⊥(χ, Z) < κ⊥(0, Z), in agreement with the
intuitive argument thatmagnetic fields should insulate the perpendicular
heat flux. In the case of χ � 0, the Spitzer theory is recovered. The Spitzer
coefficient κ⊥(0, Z) is often written as κ∥(Z), because it also describes
transport parallel to B, which is unaffected by the magnetization.

An additional consideration is that this magnetic insulation and
deflection of heat flux will only be important if the heat flux itself is
relevant. This can be measured via the hydrodynamic heat flux
Péclet number, given by |u|LT/DT, where the Spitzer thermal diffusivity
DT≃ Teτ/me and LT� Te/|∇Te|. This is a similar quantity to the Reynolds
number, but it measures the importance of electron heat flux rather than
viscosity. The Péclet number indicates that the heat flux becomes more
important as the temperature is increased. If the Péclet number is much
larger than 1, then energy flow is dominated by bulk flow, rather than by
the heat flux.

The Spitzer and Braginskii heat flux models also require local
transport. This means that electrons must be confined by Coulomb
collisions or gyromotion to a region much smaller than the gradient
scale-length of any fluid quantity. This condition can be invalidated
for some of the experiments in Fig. 1. For example, the electron
Coulomb mean free path can exceed LT/10 in laser ablation fronts.
Nonlocal models28,29 have been developed to more accurately de-
scribe the heat flux under these conditions. They are more compu-
tationally demanding than the local transport models, although they
have had some success in reproducing fully kinetic simulations.30

Adding magnetization to these models has so far proved challenging.

III. CHANGES TO THE ADVECTION OF MAGNETIC
FIELDS

To correctly predict magnetized heat conduction, the evolution
of the magnetic field must be known. Collisions significantly change

the advection of the magnetic field.6 It no longer simply advects with
the fluid, as in ideal MHD. For example, magnetic fields were
measured to accumulate near the target surface in a laser ablation
front.15 However, ideal MHD predicts advection outward with the
ablated plasma flow. Derivation of the electric field Ohm’s law from
the kinetic Vlasov–Fokker–Planck equation and substitution into
Faraday’s law explains this discrepancy. In a simplified two-
dimensional x–y geometry, where the magnetic field B � Bz(x, y)ẑ
is out of the x–y plane, the result can be written as

zBz

zt
+ ∇ · (uBBz) � ∇ · (D∇Bz) + |∇ne‖∇Te|sin θ

nee
, (5)

where θ is the angle between ∇Te and ∇ne. This reduced two-
dimensional formulation is adequate to assess the relative magni-
tude of different terms. Again, the full three-dimensional theory is of
similar character, and is given in Refs. 6, 16, 25, and 26.

Equation (5) is a simple advection–diffusion equation, with a
source term. Electron pressure creates the source term for self-
generated magnetic fields. In the collisionless case, the electron
pressure tensor can be highly anisotropic and produce Weibel
magnetic filaments.31 However, the nature of the source term changes
if Coulomb collisions confine electrons to a local region.31 This
requires that the density, temperature and magnetic scale-lengths
LT � Te/|∇Te|, Ln � ne/|∇ne|, and LB � |Bz|/|∇Bz| must greatly exceed
the electron Coulomb mean free path. In this local transport
description, the source term reduces to that given in Eq. (5), known as
the Biermann battery. This means that misaligned density and
temperature gradients will self-generate a magnetic field, even in an
initially unmagnetized plasma. Gradients in ionization can also be a
source of magnetic fields.32

Themain effect of theCoulomb collisions is to create a resistance
to currents. This causes diffusion of the magnetic field with diffusivity

D � mec2ϵ0α∥(Z)
nee2τ

, (6)

depending on the resistive transport coefficientα∥(Z). This diffusion is
included in the resistive-MHD description. However, XMHD also
includes alterations to the magnetic advection velocity

uB � u− (1 + δ⊥) J
nee

+ δ∧
J3 b̂
nee

− γ⊥
τ

me
∇Te + γ∧

τ

me
∇Te 3 b̂. (7)

In contrast with idealMHDor resistiveMHD, this is no longer just the
fluid velocity u. Fluid flow, electric currents, and temperature gra-
dients all act as a driver for magnetic field transport. These processes
depend on the γ(χ,Z) and δ(χ,Z) transport coefficients. The transport
of magnetic fields down a temperature gradient is known as Nernst
advection. It is the term proportional to γ⊥ in Eq. (7). This term is
often significant in HED plasmas, and it can be comparable to the
ideal advection.15 The γ∧ cross-Nernst termdescribes the deflection of
the Nernst advection, in the same way that the heat flux is deflected in
Eq. (4). The Hall velocity −J/(nee) is also slightly enhanced and
deflected by the terms containing δ⊥ and δ∧. However, in Sec. IV, we
will see that the Nernst terms usually dominate over these current
terms in HED plasmas. We note that the term containing δ∧
produces a diffusion ofmagneticfield. It can instead be included in the
diffusive term containing D, resulting in increased resistivity as the
Hall parameter increases. However, the formulation used in Eq. (7)
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better elucidates the symmetry between magnetic field advection and
the heat flux in Eq. (4).

The similarities between Eqs. (4) and (7) can be intuitively
understood by considering the central idea of MHD, namely, that the
magnetic field is frozen into the conducting fluid. The additional
insight in XMHD is that the Coulomb collision frequency rapidly
decreases with electron speed, so that the faster electrons constitute
the most conductive part of the electron fluid. This means the
magnetic field mainly travels with the faster electrons in the tail of the
distribution function. For example, faster electrons travel down
temperature gradients, carrying a heat flux. The magnetic field is
frozen into this flow of fast electrons, and so itmust simply travel with
the heat flux. As discussed in Sec. II, if the Hall parameter is sig-
nificant, the heat flux is deflected by the magnetic field. Owing to the
frozen-in behavior, Nernst magnetic field advection must also be
deflected.

Starting from the kinetic equation, Haines33 showed that this
analogy is exact in the case of an artificial electron collision time τ } v2,
where v is the electron speed.However, switching to the trueCoulomb
rate τ } v3 does not change the physical intuition.We therefore expect
magnetic fields to be advected approximately with the electron heat
flux from Eq. (4). However, the analogy is now no longer exact and is
only qualitative. This is why the γ and δ transport coefficients for
magnetic field advection are slightly different to the κ and β ones for
heat flux. However, numerical calculations from the kinetic equa-
tion16,27 show that κ and β have a similar functional form to the γ and
δ coefficients, in keeping with the physical picture.

The effect of each term in Eqs. (5)–(7) is shown pictorially in
Fig. 2. This presents the advection streamlines of a mock-up out-of-
plane magnetic field, meant to emulate the Biermann fields that form
around a laser ablation spot.15 The laser would be incident from
positive x and strike a target at the origin. The ablation causes a
temperature gradient andfluid velocity in the positive x direction. The

electron temperature rises linearly from 1 to 2 keV between x � 0 and
x � 0.25mm. The electron pressure is uniform at neTe � 32Mbar, and
the fluid velocity is uniform at 40 km s−1 along x. The average ion
charge state is set to Z � 5. All plots and estimates in this work have
been calculated using the transport coefficient fit functions of Ref. 16.

The outward advection with the ion fluid velocity u in Fig. 2(a) is
the result from ideal MHD. There is also the Hall advection in Eq. (7)
with velocity −J/(nee). This corrects the advection such that the
magnetic field moves with the electron fluid, rather than the ion fluid.
This Hall velocity is slightlymodified by the XMHD terms containing
the δ coefficients. There is also the collisional Nernst term that advects
magnetic fields down the temperature gradient.

As we have discussed, these collisional XMHD terms can be
magnetized in the same way as the heat flux. Equation (7) shows that
their magnitude is reduced and the direction is deflected.16 This is
described by the variation of the δ⊥, δ∧, γ⊥, and γ∧ coefficients with χ.
The δ∧ term deflects the Hall streamlines into a spiral pattern in
Fig. 2(b). The magnetization is more obvious for the Nernst
streamlines, which are deflected away from the temperature gradient
direction in Fig. 2(c). The heat flux streamlines are deflected by the
magnetic field in a very similar way. This demonstrates the analogy
between the transport ofmagnetic field and electron heat flux16,33 that
was discussed previously. The Nernst speed is higher farther away
from the target, where the plasma is hotter.

The resistive diffusion is shown in Fig. 2(d). Diffusion tends to
reduce the peak field strength and smear out magnetic features.
Figure 2(e) shows the total of all these effects. The relative magnitude
of each term is dependent on the plasma conditions. In agreement
with the laser experiment,15 the inward Nernst advection can exceed
the outward ideal advection, causing compression of magnetic field
into the overdense conduction zone. Since the Nernst term can be
inhibited by magnetization, but the ideal advection is unaffected, the
result is a complex behavior where the advection direction is reversed

FIG. 2. Mock-up schematic of the Biermann magnetic field (red/blue) at a laser ablation front, showing the effects of each term in the induction equation [Eqs. (5)–(7)]. We have
assumed an ion charge Z � 5 and mass number A � 10. The target is at x � 0, with a laser centered on y � 0, and there is a positive temperature gradient (from 1 to 2 keV) and
uniform fluid velocity (40 km s−1) along x. Streamlines show themagnetic field velocity due to (a) ideal advection, (b) Hall advection, (c) Nernst advection, (d) Ohmic resistance, and
(e) total of (a)–(d). The magnetic field produces maximal χ ≃ 1, deflecting the Nernst streamlines in (c). There is a similar deflection of the heat flux. Within each panel, the
streamline thicknesses are proportional to the advection speed. For these parameters, both ideal and Nernst advection are ≃40 km s−1, whereas the Hall and resistive terms are
≃1 km s−1.
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in some magnetized regions. It was recently found that the transport
coefficient fit functions must be carefully formulated.16,27 Previous
approximations to kinetic simulations25 do not accurately reproduce
the behavior in Fig. 2 and can cause discontinuous advection.

To visualize the relative importance of each of these induction
terms in the parameter space in Fig. 1, it is informative to take their
ratios. To reduce these ratios to a form that can be visualized, it is
necessary to assume that LT ≃ Ln ≃ LB. Making this assumption, the
ratio of the Biermann (electron pressure) term to the Hall term is
neTe/(c

2ϵ0|B|2). Although this does not include the ion pressure, it is
approximately equal to the total plasma β in Eq. (1). We therefore see
that in the β≪ 1 red region in Fig. 1, the electron pressure term can be
neglected in the induction equation. Conversely, β ≫ 1 implies that
electron pressure and self-generated magnetic fields are important,
but the magnetic field has little effect back on the fluid momentum
equation, since |J 3 B| ≪ |∇P|.

Again considering Eqs. (5)–(7) and taking LT≃ Ln≃ LB, the ratio of
theHall advection term to the resistive diffusion term is approximately χ.
We therefore see that above the blue region in Fig. 1, resistive diffusion is
small compared with Hall advection. In the limit β ≪ 1 and χ ≫ 1 the
resistive and pressure terms are negligible and the δ and γ transport
coefficients go to zero, meaning we are left with uB � u − J/(nee), known
as Hall MHD. This is valid in the red region.

In the opposite limit of χ ≪ 1, the Hall terms are negligible
compared with the resistive diffusion, a regime known as resistive
MHD. The dominant terms are then the ideal advection u and the
resistive diffusion. The ratio between these is the magnetic Reynolds
number RM � |u|LB/D. This gives an indication of the relative im-
portance of magnetic advection and diffusion. In HED plasmas, the
J 3 B forces are often comparable to viscous forces. This can affect
MHD turbulence properties.34 However, the magnetized transport
effect can be much stronger than either, affecting the large-scale
evolution of the temperature profile.

The χ ≪ 1 resistive diffusion regime is further subdivided into a
part where plasma Spitzer resistivity is valid (for lnΛ≫ 1) and a part
where a tabulated material resistivity must be used. In resistiveMHD,
the Biermann and Nernst advection terms must also be retained. We
note that the Nernst term is often incorrectly neglected in resistive-
MHDmodeling of HEDplasmas. For example, the ratio of theNernst
term to the resistive diffusion term in Eqs. (5)–(7) is

γ⊥τTeBz

meL2
nee2τL2

mec2ϵ0α∥Bz
� γ⊥

α∥

neTee2τ2

m2
ec

2ϵ0
≃

4Te

mec2
Λ
lnΛ( )2γ⊥(χ, Z)

α∥(Z) . (8)

This is directly related to how weakly coupled the plasma is. The
region where this ratio exceeds 1 is shown in green in Fig. 1. The
transport coefficients use the fit functions of Ref. 16.

TheNernst advection ismore important in hotter, weakly coupled
plasmas. SomeHEDplasmas, such as hohlraums and the solar core, fall
in this regime, such that Nernst advection is at least as important as
resistive diffusion. Nernst advection often dissipates themagnetic field,
since it advects toward colder and more resistive regions. Standard
resistive MHD is therefore unlikely to capture all of the relevant
magnetic field evolution. By contrast, theNernst effect can be neglected
for colder HED plasma experiments below the green line in Fig. 1. This
includes, for example, the Rayleigh–Taylor instability in cylinder
implosions35,36 [“RTI/HED” experiments in Fig. 1(b)].

In the panels for higher field strength in Fig. 1, the red and blue
regions shift toward higher plasma density, whereas the green sep-
aratrix for the Nernst-dominated regime is almost unchanged in the
region with χ < 1. For example, the fuel hot-spot in ICF is also within
the Nernst-dominated regime. It is also within the blue region where
magnetized heat flux will impact hydrodynamics. Self-generated
magnetic fields slightly enhance fusion yield by insulating the hot-
spot,12 but they can also negatively impact the shape of the hot-spot
and the growth of instabilities.12

In conclusion, the Hall parameter χ indicates the transition from
resistiveMHD(χ≪ 1) to theweakly collisionalMHDmodel at χ≫ 1. In
the intermediate regime χ ≃ 1, collisions are of similar importance to
magnetic gyromotion, meaning the full transport coefficients, magne-
tized heat flux, and XMHD model must be calculated. For χ ≪ 1, the
resistive-MHD and Spitzer heat flux models are sufficient. However,
Nernst advection of the magnetic field may still be significant.

IV. SATURATED SELF-GENERATED FIELD STRENGTH

To further elaborate on the self-magnetization, Fig. 3 shows
several cuts through parameter space at fixed plasma density. The
upper panels have fixed magnetic field strength and the lower panels
have fixed temperature. Conditions have been chosen to represent
self-generated magnetic fields in HED shock tube experiments36 (left
panels), laser ablation fronts (center panels) and compressed inertial
confinement fusion hot-spots (right panels). As in Fig. 1, we assume
LT � Ln � LB, each with a value of L � 20 μm. However, with the
exception of ideal advection, all terms are }L−2, and so changing L
does not change their relative magnitudes.

Considering the dotted lines in Figs. 3(a)–3(c), the Coulomb
logarithm is in the range 1–10 for these HED conditions. We have
used the form 0.5 + 0.5 ln(1 + Λ2), where

Λ � e23
Te

eV
( )3/2 ne

cm−3( )−1/2
Z −1[ ]. (9)

To plot the ideal advection, we must assume a value for the fluid
velocity. We have taken a value equal to the sound speed, and so the
ideal term (blue) is dominant inmost panels. In subsonic or stagnated
plasmas, the ideal advectionwill not be as important as Fig. 3 suggests.
The Nernst advection (green) is also a dominant term, especially at
higher temperatures. Depending on the plasma profiles, these ad-
vection terms can enhance or dissipate the magnetic field.

The Hall advection (red) is usually negligible for HED plasmas.
The diffusion term (gray) decreases with temperature. The dashed
line shows the Hall parameter χ, increasing with temperature. This
does not become significant for the shock tube experiments, whereas
it can exceed 1 andmagnetize the heat flux in the hotter laser or fusion
plasmas.

The lower panels show the dependence on magnetic field
strength. The Biermann source term (purple) is independent of the
field strength, and so the self-generated field will continue to grow
from zero until other terms become comparable to it. Figures
3(d)–3(f) therefore allow us to find an estimate of the equilibrium
self-generated field strength by finding the intersection of the source
term (purple) with the most dominant dissipation term. In the shock
tube experiments at T ≃ 50 eV, Nernst and Hall advection are both
negligible.37 The evolution is mostly dominated by the ideal and
resistive terms, or resistive MHD. If flow is significantly subsonic, the
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resistive diffusion is the dominant term. It causes saturation when it
equals the Biermann source term (intersection of purple and gray
lines) at around |B| ≃ 10 T. This results in χ ≃ 0.001 (dashed line), and
so the heat flux is not magnetized.

By contrast, the hotter laser ablation plasma in Fig. 3(e) can
have Nernst advection exceeding ideal advection, even with su-
personic flow. The ideal and Nernst advection are in opposite di-
rections (Fig. 2), and so there is a spatial position where they cancel
out, with field strength given by the intersection of the green and
blue lines. This point has |B| ≃ 100 T and χ ≃ 1. Laser ablation
therefore requires the full XMHD treatment with magnetized heat
flux. Thismagnetization effect can also be seen in Fig. 3(e), where the
Nernst term tails off for χ > 1. There is a similar reduction in the
electron heat flux.

In Fig. 3(f), the magnetic advection in ICF fuel is dominated by the
ideal and Nernst terms. Which one is larger depends on the Mach
number, or the level of residual kinetic energy at fuel stagnation. Resistive
diffusion and Hall advection are generally quite small in the hot-spot,
although resistance will become important if the field is Nernst-advected
into the colderhydrogen shell, as seen inFig. 3(c). In awell-stagnatedhot-
spot, the fuel flow is very subsonic, and so the ideal advection (blue) will
not saturate the Biermann growth. Given the flow convergence, the ideal
advection can even enhance the magnetic fields. Given enough time to
grow, the self-generated magnetic field will therefore not saturate until it
is balanced by Nernst advection at |B| ≃ 103 T and χ ≃ 0.1, meaning that
heat flux magnetization must be considered in the hot-spot.12

Of course, our assumption that LT ≃ Ln ≃ LB may not hold for
realistic plasma profiles, meaning XMHD numerical simulations will be

FIG. 3. Line-outs of the XMHD parameter space terms in Eqs. (5)–(7), assuming sin θ � 0.1. Conditions are chosen for (a) and (d) solid targets in HED experiments with Z � 5, (b)
and (e) laser ablation fronts with Z � 5, and (c) and (f) ICF hot-spots with Z � 1. We have assumed an ion mass number A � 2Z. The upper panels show the variation of each term
with temperature at a fixed magnetic field. The lower panels show the variation of each term with magnetic field strength at a fixed temperature. A fixed scale-length of L � 20 μm
has been assumed for the gradients of all quantities. However, with the exception of the ideal advection, changing this value does not change the relative strength of each term. The
ideal term assumes |u| to be equal to the sound speed. The maximum value of the temperature axis in (a)–(c) is where the electron mean free path exceeds L/10 and so the local
transport theory breaks down.

Matter Radiat. Extremes 6, 065902 (2021); doi: 10.1063/5.0057087 6, 065902-7

©Author(s) 2021

Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

https://doi.org/10.1063/5.0057087
https://scitation.org/journal/mre


required. However, making this assumption has enabled estimates of the
saturated self-generated magnetic field strength for several scenarios.
This reduces the parameter space to just two dimensions (density and
temperature). Below the green line in Fig. 1(a), the dominant saturation
mechanism for the growing Biermann fields is resistive diffusion. Above
the green line, thepicture becomesmore complicated, because theNernst
term becomes dominant. If the fluid flow is sufficiently fast, ideal ad-
vection may also play a part in causing saturation.38 Assuming that the
Biermann term is balanced solely by resistive diffusion, and again as-
suming LT ≃ Ln ≃ LB, leads to

∇ · (D∇Bz) � |∇ne‖∇Te|sin θ
nee

, (10)

Bmax ≃ 0.012
T5/2
eV sin θ
α∥Z lnΛ (T), (11)

where TeV is the electron temperature in eV. This estimate has been
previously derived by Haines.38 We immediately see that the satu-
rated field strength is heavily dependent on temperature. The esti-
mated saturated field will also be stronger in lower-Z plasma.

To know if these saturated Biermann fields are strong enough to
magnetize the heatflux, wemust substitute into Eq. (3) to calculate the
corresponding Hall parameter

χmax �
eBmaxτ

me
≃ 1.23 10−9

A sin θ

α∥Z3(lnΛ)2
T4
eV

ρcc
, (12)

where A is the ion atomic mass number and ρcc is the mass density in
g cm−3. This estimate has a strong dependence on electron temperature
and ion charge state. It also increases with the angle between the
electron density and temperature gradients. Maximizing this angle
requires the introduction of strong multidimensional plasma asym-
metries. The Biermann source term is zero in a one-dimensional or
spherically symmetric geometry.

The minimum temperature required to reach χ ≃ 0.1
andmagnetize the heat flux is shown in Fig. 4. Contours are shown for
Z � 1 and Z � 5. We have assumed sin θ � 0.1, typical of the strong
Biermann generation in a shear layer.39

The other terms in Eq. (5) may be important as well. In par-
ticular, above the green line in Fig. 1,Nernst advection dominates over
the resistive diffusion. This is true even for χ ≪ 1. Depending on the
exact temperature profile, Nernst advection can act to either increase
or decrease |B|. However, it advects magnetic field toward colder
regions, and so it often decreases the Hall parameter [Eq. (3)]. A
similar balancing calculation, using the Nernst term, gives

∇ · Bmaxγ⊥
τ

me
∇Te( ) � |∇ne‖∇Te|sin θ

nee
, (13)

Bmax ≃
me

γ⊥eτ
sin θ, (14)

χmax ≃
sin θ
γ⊥

. (15)

The transport coefficient γ⊥ > 0.2 for low Hall parameter χ < 1,
and so Nernst advection will begin to affect Biermann magnetic field
growth well before it produces χ ≃ 1. Inclusion of Nernst advection is
therefore a requirement for predicting Biermann heat flux magne-
tization. Resistive MHD is insufficient.

Note that these estimates have not considered the fluid advection of
themagnetic field. If there is convergence∇ · u < 0 and RM≫ 1, then the
Hall parameter may be increased somewhat beyond these estimates. For
example, ideal advection results inχ >1 in convergenceof ICFhot-spots12
or can lead to even faster growth under the turbulent dynamo process.20

V. SUMMARY

In summary, we have discussed the effect ofmagnetic fields on heat
transport in HED plasmas. The Spitzer heat flux can be magnetized,
meaning it is reduced in magnitude and deflected. There is a qualitative
symmetry between the flow of heat and the flow of magnetic field in the
plasma. This leads to Nernst advection of magnetic field down tem-
perature gradients.Owing to this symmetrywith the heatflux, theNernst
advection of the magnetic field can itself be reduced and deflected when
χ ≃ 1. We have discussed the parts of parameter space where the
magnetization occurs and the full XMHDmodel must be used. In other
parts of the parameter space, it reduces to resistive MHD or Hall MHD.

By taking line-outs in Fig. 3, we have also estimated the part of
parameter space where self-magnetization could affect the hydrody-
namics of HED plasmas. This requires Biermann self-generated fields
from significantly misaligned density and temperature gradients. This
XMHD effect reaches beyond the standard radiation hydrodynamic or
ideal-MHDmodels. Themagnetized heat flux effects have beenmodeled
with the XMHD codes Gorgon12 and Hydra.7 XMHD capabilities are
also being developed in Flash.27,39 Themagnetized heatfluxwill affect the
growth of fluid instabilities, heat confinement, and plasma symmetry.
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